TD d'Analyse de base 1 : Nombres réels.

CPI 1 / S 1.

Exercice 1:

Le maximum de deux nombres x, y (c'est-à-dire le plus grand des deux) est noté $\max(x, y)$. De même on notera min(x, y) le plus petit des deux nombres x, y.

- 1. Démontrer que : $\max(x,y) = \frac{x+y+|x-y|}{2}$ et $\min(x,y) = \frac{x+y-|x-y|}{2}$.
- 2. Trouver une formule pour $\max(x, y, z)$.

Exercice 2:

Montrer que le sous-ensemble $X = \{x \in \mathbb{Q} | x^2 < 2\}$ de \mathbb{Q} n'a pas de borne supérieure dans \mathbb{Q} .

Exercice 3:

Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$[0,1] \cap \mathbb{Q},]0,1[\cap \mathbb{Q}, \mathbb{N}, \left\{ (-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^* \right\}.$$

Exercice 4:

Soient a, b deux réels strictement positifs. Les parties suivantes sont-elles majorées, minorées? Si oui, déterminer leurs bornes supérieures, inférieures.

1.
$$\{a+bn; n\in\mathbb{N}\}$$

2.
$$\{a + (-1)^n b; n \in \mathbb{N}\}$$

3.
$$\{a+\frac{b}{n}; n\in\mathbb{N}^*\}$$

4.
$$\{(-1)^n a + \frac{o}{n}; n \in \mathbb{N}^*\}$$

1.
$$\{a + bn; n \in \mathbb{N}\}$$

2. $\{a + (-1)^n b; n \in \mathbb{N}\}$
3. $\{a + \frac{b}{n}; n \in \mathbb{N}^*\}$
4. $\{(-1)^n a + \frac{b}{n}; n \in \mathbb{N}^*\}$
5. $\{a + (-1)^n \frac{b}{n}; n \in \mathbb{N}^*\}$
6. $\{\frac{1}{n}; n \in \mathbb{N}^*\}$

6.
$$\{\frac{1}{n}; n \in \mathbb{N}^*\}$$

Exercice 5:

Les parties de R suivantes sont elles-minorées, majorées? Dans chaque cas, déterminer s'il y a lieu la borne inférieure, la borne supérieure, et dire s'il s'agit d'un minimum ou d'un maximum.

$$A = \left\{ \frac{n}{mn+1}; \ (m,n) \in \mathbb{N}^{*2} \right\}, \qquad B = \left\{ \frac{n}{mn+1}; \ (m,n) \in \mathbb{N}^2 \right\}.$$

Exercice 6:

Soient A et B deux parties non-vides de \mathbb{R} telles que $\forall a \in A, \forall b \in B, a \leq b$. Démontrer que A est majoré, B est minoré et $\sup(A) \leq \inf(B)$.

ENSA-KENITRA A.U: 2020-2021

Exercice 7:

Soient A et B deux parties non-vides et bornées de \mathbb{R} , et $x \in \mathbb{R}$. On note

$$-A = \{-a; \ a \in A\}$$
 $A + B = \{a + b; \ a \in A, b \in B\}$
 $x + A = \{x + a; \ a \in A\}$ $AB = \{ab; \ a \in A, b \in B\}.$

- 1. Montrer que sup A, sup B, sup (A + B), inf A, inf B, inf (A + B) existent.
- 2. Montrer que $\sup(-A) = -\inf(A)$.
- 3. Montrer que $\sup(A+B) = \sup(A) + \sup(B)$.
- 4. Montrer que $\inf(A+B) = \inf A + \inf B$.
- 5. Montrer que $\sup(x+A) = x + \sup(A)$.
- 6. A-t-on toujours $\sup(AB) = \sup(A) \times \sup(B)$? Quelle hypothèse peut-on ajouter pour que cela soit vrai?
- 7. Que dire de $\sup(A \cap B)$, $\sup(A \cup B)$

Exercice 8:

Soit A une partie non vide et bornée de \mathbb{R} . Montrer que $\sup\{|x-y|,\ (x,y)\in A^2\}=\sup A-\inf A$.

Exercice 9:

- 1. Montrer que $\forall x \in \mathbb{R}, \ E(x+1) = E(x) + 1.$
- 2. Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, \ E(x+n) = E(x) + n$.
- 3. Montrer que $\forall (x,y) \in \mathbb{R}^2$, $E(x) + E(y) \leq E(x+y)$.
- 4. Montrer que $\forall (x,y) \in \mathbb{R}^2$, $E(x+y) = E(x) + E(y) + \varepsilon(x,y)$ avec $\varepsilon(x,y) \in \{0,1\}$.
- 5. Montrer que $: \forall (x, y) \in \mathbb{R}^2 \ E(x) + E(y) + E(x + y) \le E(2x) + E(2y)$.
- 6. Montrer que : $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ E(\frac{E(nx)}{n}) = E(x).$

Exercice 10:

- 1. Démontrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $r.x \notin \mathbb{Q}$.
- 2. Montrer que $\sqrt{2} \notin \mathbb{Q}$.
- 3. En déduire qu' entre deux nombres rationnels il y a toujours un nombre irrationnel. (i.e : \mathbb{Q} est dense dans \mathbb{R})
- 4. En utilisant la densité de \mathbb{Q} dans \mathbb{R} , montrer que tout nombre réel est limite d'une suite de nombres rationnels.

Exercice 11:

Soit $x \in \mathbb{R}$.

- 1. Donner l'encadrement de la partie entière E(x).
- 2. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_n=\frac{E(x)+E(2x)+\ldots+E(nx)}{n^2}$. Donner un encadrement simple de n^2u_n .
- 3. En déduire que $(u_n)_{n\in\mathbb{N}^*}$ converge et calculer sa limite.
- 4. En déduire que \mathbb{Q} est dense dans \mathbb{R} .

Bonne chance